
Bologna - Sabato 14 Ottobre

Federico Dotta
Security Advisor

@ Mediaservice.net S.r.l.
(federico.dotta@mediaservice.net)

• OSCP, CREST PEN, CSSLP
• 7+ years in Penetration Testing
• Focused on application security
• Developer of sec tools:

https://github.com/federicodotta
• Trainer

mailto:federico.dotta@mediaservice.net
https://github.com/federicodotta

• Fixed client (web browser)

• Logic usually is mainly on
the backend components

• Client-side application
code usually is coded with
interpreted languages

• Provisioned directly from
the application server

• Custom compiled client

• Logic usually divided
between client and
backend

• Client-side application
code can be interpreted or
compiled

• Provisioned from a trusted
third party

It’s almost impossible to test a complex mobile application
adequately without skills in:

• Reversing (Java for Android but also ARM64 for iOS
applications)

• Instrumentation and debugging

• Development of custom plugins for your favorite HTTP
Proxy (Burp Suite, OWASP ZAP)

1

2

3
4

5

6

1

2

3
4

5

6

1

2

3
4

5

6

1. Set an HTTP proxy
in the device.

2. Intercept data
traffic

3. Test the backend!

• Suite of tools that helps penetration testers during the
assessment

• Contains a lot of useful tools: HTTP Proxy, Intruder (fuzzer), a
great automatic Scanner and a Repeater Tool

• Furthermore, it offers an external server very useful to test
external service interactions (Collaborator) and a very good
session manager

• It exports API to extend its functionalities, and consequently a
huge number of plugins have been released by various
developers that aid pentesters in almost every situation.

• It is de-facto standard for web application security testing.

1

2

3
4

5

6

1

2

3
4

5

6

1. Install Burp Suite
CA certificate in the
device

2. Set Burp Suite as
proxy in the device

3. Intercept data
traffic

4. Test the backend!

1

2

3

4

5

6

1

2

3

4

5

6

Now complications start! We
can try generic tools/scripts

for pinning bypass, but often
we need to reverse the

application and bypass the
check.

For this task our favorite tool
is Frida!

• If you are lucky, several generic tools and scripts try to
bypass SSL pinning implemented in common ways.

• Android Example: Universal Android SSL Pinning Bypass
with Frida
(https://codeshare.frida.re/@pcipolloni/universal-android-
ssl-pinning-bypass-with-frida/)

• iOS Examples: Burp Suite Mobile Assistant
(https://portswigger.net/burp/help/mobile_testing_using_
mobile_assistant.html) and SSL Kill Switch 2
(https://github.com/nabla-c0d3/ssl-kill-switch2)

https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://portswigger.net/burp/help/mobile_testing_using_mobile_assistant.html
https://github.com/nabla-c0d3/ssl-kill-switch2

• But if you are not so lucky… it’s time to reverse the
application!
▪ For Android applications: decompile dex and get Java code

▪ For iOS applications and Android native libraries: disassemble
code with IDA Pro (https://www.hex-rays.com/products/ida/),
Radare2 (https://github.com/radare/radare2) or Hopper
(https://www.hopperapp.com/)

• Once you locate the SSL Pinning code, you can patch the
binary or you can dynamically modify code at runtime

https://www.hex-rays.com/products/ida/
https://github.com/radare/radare2
https://www.hopperapp.com/

• Frida is a dynamic code instrumentation toolkit. It lets you
inject snippets of JavaScript or your own library into native
apps on Windows, macOS, GNU/Linux, iOS, Android, and
QNX. (cit. www.frida.re)

• It is an amazing tool and it works both on iOS and on
Android, allowing to inspect and modify running mobile
code

• The hooks are specified with JavaScript language and can
be used for instrumentation and replacement of Java and
Objective-C functions

http://www.frida.re/

1

2

3
4

5

6

1

2

3
4

5

6

1. Install Burp Suite
certificate in the device

2. Set Burp Suite as proxy in
the device

3. Bypass SSL Pinning
4. Ouch! All POST bodies

are encrypted! :’(

POST /login HTTP/1.1

Host: www.test.com

…

parameters=djshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsf
jdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjskjcndjshfj
dsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsfjdanjfndsjncjxknj
skdnfjnjvxcnjkansdjksncxjndjskjcndjshfjdsvcxuchvjsdbfvjb
jfndakfdshfcjxnnvdfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkans
djksncxjndjskjcndjshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnv
dfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjskjcn%
3d%3d

SampleClass + (id)generatePostBody :(id)

SampleClass + (id)getClearTextMessage :(id)

SampleClass + (id)generatePostBody :(id)

SampleClass + (id)getClearTextMessage :(id)

SampleClass + (id)generatePostBody :(id)

SampleClass + (id)getClearTextMessage :(id)

…

* generatePostBody input:

{“username”:”test”,”password”:”testPassword”}

* generatePostBody output:

djshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsfj

danjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjsk

jcndjshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfj

sfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjnd

jskjcndjshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnv

dfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncx

jndjskjcndjshfjdsvcxuchvjsdbfvjbjfndakfdshfcjx

nnvdfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjks

ncxjndjskjcn==

…

POST /login HTTP/1.1

Host: www.test.com

…

parameters=djshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsfjdanjfndsjn

cjxknjskdnfjnjvxcnjkansdjksncxjndjskjcndjshfjdsvcxuchvjsdbfvjbjfnda

kfdshfcjxnnvdfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjskjcn

djshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsfjdanjfndsjncjxknjskdnf

jnjvxcnjkansdjksncxjndjskjcndjshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnn

vdfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjskjcn%3d%3d

Reverse base64EncodedText = Base64(AES(clear-text))

POST /login HTTP/1.1

Host: www.test.com

…

parameters=djshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsfjdanjfndsjn

cjxknjskdnfjnjvxcnjkansdjksncxjndjskjcndjshfjdsvcxuchvjsdbfvjbjfnda

kfdshfcjxnnvdfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjskjcn

djshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsfjdanjfndsjncjxknjskdnf

jnjvxcnjkansdjksncxjndjskjcndjshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnn

vdfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjskjcn%3d%3d

Reverse base64EncodedText = Base64(AES(clear-text))
KEY?

…

CCOperation: 0 (encrypt)

CCAlgorithm: 0 (kCCAlgorithmAES128)

CCOptions: 1 (kCCOptionPKCS7Padding)

Key: testPassword (in ASCII to make it more

readable)

Key length: 16

…

And were is the key stored?
Often it’s hard-coded in the binary!

• Great! Now we have only to code a Burp Suite plugin to
decrypt requests and responses and to re-encrypt them if
modified

• It seems simple, but it is not always so… We have to find a
library that offers the same algorithm with the same
parameters (padding, key size, etc.). Java Bouncy Castle is
the way!

• Many hours of coding work!

• We want to write a Burp Suite plugin user-friendly enough
to test this particular application.

• We want to add a custom editable subtab containing the
decrypted request/response

• We want be able to modify the decrypted requests

• It’s not an option: it’s the only way to test the backend!

1

2

3
4

5

6

AES

Clear-text
JSON message

Random key

SERVER PUBLIC key

POST MESSAGE

RSA

AES

Clear-text
JSON message

Random key

SERVER PRIVATE key

POST MESSAGE

RSA

We don’t have
the private key
necessary to
decrypt the
random key

We can’t decrypt
the body from
our custom-

written Burp Suite
plugin. Stop.

We can’t
decrypt the
random key

We don’t have
the private key
necessary to
decrypt the
random key

We can’t decrypt
the body from
our custom-

written Burp Suite
plugin. Stop.

We can’t
decrypt the
random key

We have to
find another

way.

We can trap CCCrypt function with Frida (as seen before)
and print the asymmetric keys before they are encrypted.

Not convenient. We need to pass to the plugin a new key for
every request (if we try 20 SQL injection vectors we have to
manually insert 20 keys in the plugin)

We can replace the public key used for the encryption of the
key (physically if it is stored on the device or with Frida) with
a public key generated by us (as a classic MitM with SSL).
This way, Burp can decrypt the random key, and re-encrypt
it with the public key of the server.

More convenient, but it requires more coding work, because
the Burp Suite plugin has to deal also with public key
encryption and not only with symmetric encryption.

• Ok, and if we trap the function that generates the
random values with Frida and replace the return value
with a fixed string? For example 0x1111111111111111 ?

• In this way we can write a plugin that
encrypts/decrypts the JSON of every request with the
chosen fixed key without considering the part of the
asymmetric encryption at all!

• And the problem is solved!

• We spent a lot of time in reversing!

• We spent a lot of time in coding!

• What if the application employs a custom encryption
method? We need to reverse and re-implement in Java,
Python or Ruby the custom encryption method.
Very time consuming!

• What if we can’t find a library that offers the same
encryption/signature algorithm with the same parameters
of the mobile application?

1

2

3
4

5

6

• We can’t use Frida to replace the generated key with a
fixed string, because it will work only for the first request!

• We can return to the inconvenient way (print the key with
Frida and manually insert every key in Burp Suite) or to the
heavy-code way (change the public key with a generated
one and a complex Burp Suite plugin that handles both
symmetric and asymmetric encryption)

• Or… we have to find a way to let Burp talk with Frida!

AUTHORS

CONTRIBUTORS

POST /login HTTP/1.1

Host: www.test.com

…

parameters=djshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsfjdanjfndsjn

cjxknjskdnfjnjvxcnjkansdjksncxjndjskjcndjshfjdsvcxuchvjsdbfvjbjfnda

kfdshfcjxnnvdfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjskjcn

djshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsfjdanjfndsjncjxknjskdnf

jnjvxcnjkansdjksncxjndjskjcndjshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnn

vdfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjskjcn%3d%3d

Reverse base64EncodedText = Base64(AES(clear-text,random_key) +
RSA(random_key,public_key))KEY?

POST /login HTTP/1.1

Host: www.test.com

…

parameters=djshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsfjdanjfndsjn

cjxknjskdnfjnjvxcnjkansdjksncxjndjskjcndjshfjdsvcxuchvjsdbfvjbjfnda

kfdshfcjxnnvdfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjskjcn

djshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsfjdanjfndsjncjxknjskdnf

jnjvxcnjkansdjksncxjndjskjcndjshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnn

vdfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjskjcn%3d%3d

Reverse base64EncodedText = Base64(AES(clear-text,random_key) +
RSA(random_key,public_key))KEY?

POST /login HTTP/1.1

Host: www.test.com

…

parameters=djshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsfjdanjfndsjn

cjxknjskdnfjnjvxcnjkansdjksncxjndjskjcndjshfjdsvcxuchvjsdbfvjbjfnda

kfdshfcjxnnvdfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjskjcn

djshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnnvdfjsfjdanjfndsjncjxknjskdnf

jnjvxcnjkansdjksncxjndjskjcndjshfjdsvcxuchvjsdbfvjbjfndakfdshfcjxnn

vdfjsfjdanjfndsjncjxknjskdnfjnjvxcnjkansdjksncxjndjskjcn%3d%3d

We don’t have to deeply
reverse and implement

complex plugins! We can
simply ask the target

application to encrypt/decrypt
messages for us!

SampleClass + (id) generatePostBody :(id)

SampleClass + (id) getClearTextMessage :(id)

• When we have to decrypt a message, we use Brida to ask
the application to decrypt the message for us

• When we have to encrypt a message, we use Brida to ask
the application to encrypt the message for us

• We don’t need to know how the message is
encrypted/decrypted!!

• Much less reversing! (days!)

• Much less coding! (We don’t need to reimplement
encryption/decryption/signature functions, we simply use
directly the iOS application functions)

• We can write a simple Burp Suite plugin with few lines of
code to do the job!

Level 1

Level 2
• SSL

Level 3
• SSL
• Certificate pinning

Level 4

• SSL
• Certificate pinning
• POST bodies encrypted with symmetric encryption

Level 5

• SSL
• Certificate pinning
• POST bodies encrypted with symmetric encryption
• Keys encrypted with asymmetric encryption

Level 6

• SSL
• Certificate pinning
• POST bodies encrypted with symmetric encryption
• Keys encrypted with asymmetric encryption as the previous level
• Check previous keys

Brida
(Brida.jar)

Custom
plugin with
Brida stub
(optional)

Burp Suite Pyro4

Pyro4 Server
(bridaService
Pyro.py)

Frida

Frida server
(script.js)

Tester notebook Mobile device

• Thanks to the «rpc» object of Frida it is possible to expose
RPC-style functions

• From Burp Suite we call a Pyro function that acts as a
bridge

• Pyro calls the selected Frida exported function and returns
the result back to Burp Suite

• Signal is an encrypted communications application for
Android and iOS.

• Signal is perfect as an example because it encrypts
messages and because it is open source

• We redirect iOS traffic through Burp Suite (bypassing
pinning)

• We use Brida and a custom plugin to dynamically modify
the content of every message in «pwned»

All the plugin logic is
contained in about 30

lines of code!

ReceiverSender

• Brida repo: https://github.com/federicodotta/Brida

• Brida releases: https://github.com/federicodotta/Brida/releases

• Signal example:
https://github.com/federicodotta/Brida/tree/master/examples

• Article that describes Brida:
https://techblog.mediaservice.net/2017/07/brida-advanced-
mobile-application-penetration-testing-with-frida/

https://github.com/federicodotta/Brida
https://github.com/federicodotta/Brida/releases
https://github.com/federicodotta/Brida/tree/master/examples
https://techblog.mediaservice.net/2017/07/brida-advanced-mobile-application-penetration-testing-with-frida/

1

2

3
4

5

6

CONGRATULATIONS MARIO!

AUTHOR

FEDERICO DOTTA

REVIEW

MAURIZIO AGAZZINI

Marco Ivaldi

LICENSE

CREATIVE COMMONS

