
Take a Walk on the Wild
Side(-Channel)

Enrico Perla

DISCLAIMER

This presentation is my own work and does not necessarily reflect the
views of my previous or current employer.

This presentation lives on the shoulder of giants: Anders Fogh, Matt
Miller and Christopher Ertl and all the other real deal researchers (Jann
Horn, Daniel Gruss and the rest of the Graz University team and many
others I can’t cite for space reasons).

SO, WHAT HAPPENED

• Spectre and Meltdown hit the news

WHAT ARE WE DEALING WITH

• A new class of hardware vulnerabilities

• Information potentially leaking across privilege/isolation boundaries
• A lower privilege entity may steal information from higher privilege entities

• Principles affect many modern CPUs

• Patching is not always straightforward

ISOLATION

• Hardware is not infinite, resources need to be shared

• Sharing and orchestration done by a higher privileged entity to avoid
interferences

VMM

Kernel Kernel Kernel

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

ISOLATION

• Hardware and software build on assumptions and define interfaces
across privilege levels

• Data not exposed by these interfaces is not accessible by lower
privilege levels

VMM

Kernel Kernel Kernel

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

HOW TO BREAK ISOLATION

• Challenge and Bypass interface checks/restrictions and assumptions

• Issues hide in complexity, performance optimizations, usability
shortcuts and legacy/retro compatibility

VMM

Kernel Kernel Kernel

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

P
ro

cess

PRIVILEGE ESCALATION

• End tail of golden era of memory corruption attacks

• More and more attempts at formalizing the behaviour and designing
better defences
• Thomas Dullien – Weird Machines, Exploitability and Provable Unexploitability

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8226852&tag=1

• Attackers move down the stack as easier paths get closed
• Improvements in userland defences -> kernel exploitation

• Increasing interest into challenging hardware assumptions

PROGRAM EXECUTION

A program is a set of instructions with a well defined/expected flow

MODEL: instructions execute sequentially, one after the other

PROGRAM EXECUTION

A program is a set of instructions with a well defined/expected flow

MODEL: instructions execute sequentially, one after the other

REALITY: this model of execution would be too slow. Modern CPUs
use parallelism and speculation to improve performance

PIPELINE

Instructions are broken
down into smaller steps
that are executed
independently

SUPERSCALAR

Multiple execution units
allow to execute > 1
instruction per cycle

OUT OF ORDER EXECUTION

MOV RAX, [ADDRESS]

ADD RBX, RAX

MOV RCX, [RDX]

Instructions that
don’t depend on
each other can
execute ahead of
time

Depends on previous
instruction, so has to wait

SPECULATIVE EXECUTION

TEST RAX, RAX

JE Dest

MOV RBX, [RCX]

When encountering a
conditional flow change, the
processor gambles on the
future destination and keeps
fetching instructions

If the gamble is wrong, the
result of the computation is
discardedROI on gamble depends on

the ability to correctly
predict (history)

SPECULATIVE EXECUTION

MODEL: whenever the processor guesses wrong, the discarded results
do not leave visible traces and execution proceeds through the right
path.

SPECULATIVE EXECUTION

MODEL: whenever the processor guesses wrong, the discarded results
do not leave visible traces and execution proceeds through the right
path.

REALITY: the thrown away execution leaves side effects. These side
effects can be measured to extract information.

SPECULATIVE EXECUTION

MODEL: whenever the processor guesses wrong, the discarded results
do not leave visible traces and execution proceeds through the right
path.

REALITY: the thrown away execution leaves side effects. These side
effects can be measured to extract information.

ATTACK: a lower privileged entity may extract this information to leak
data from a more privileged entity.

SIDE EFFECTS

• Access to main memory is slow

• Programs tend to access the same (or adjacent) memory locations
multiple times

• CPU have a set of caches where recently accessed memory is stored

• Cache traffic is not discarded after a mispredicted speculation path

• Caches are shared across different privilege levels

• Different time of access leaks information on whether a given
memory line is in cache or not

SIDE EFFECTS

• Access to main memory is slow

• Programs tend to access the same (or adjacent) memory locations
multiple times

• CPU have a set of caches where recently accessed memory is stored

• Cache traffic is not discarded after a mispredicted speculation path

• Caches are shared across different privilege levels

• Different time of access leaks information on whether a given
memory line is in cache or not

Side-channel

SIDE-CHANNEL ATTACKS

MODEL: 1.A lower privileged entity cannot reliably control speculation paths.
2.Extractable information is not valuable enough (address vs content).

SIDE-CHANNEL ATTACKS

MODEL: 1.A lower privileged entity cannot reliably control speculation paths.
2.Extractable information is not valuable enough (address vs content).

REALITY: the prediction algorithm can be trained. Speculation choices
become predictable. Certain code patterns leak content information.

SIDE-CHANNEL ATTACKS

MODEL: 1.A lower privileged entity cannot reliably control speculation paths.
2.Extractable information is not valuable enough (address vs content).

REALITY: the prediction algorithm can be trained. Speculation choices
become predictable. Certain code patterns leak content information.

ATTACK: Spectre V1: an attacker may force a mispredicted branch with
controlled input, leading to a speculative out-of-bounds load whose
content is used as input for a subsequent load. The second load leaks
the first load content. Attackers can find these sequences in higher
privileged code or, in certain circumstances, create them (JIT).

SPECTRE V1

if (controlled_index < max_index) {

value1 = index_array[controlled_index];

value2 = data_array[value1 * 0x40];

}

Speculate with index bigger
than max_index

Second memory dereference populates cache line that
leaks value1 when data_array address is known

SIDE CHANNEL ATTACKS

MODEL: lower privileged entities cannot influence the destination of
predicted speculation.

SIDE CHANNEL ATTACKS

MODEL: lower privileged entities cannot influence the destination of
predicted speculation.

REALITY: space matters. Prediction tables don’t contain the whole
source address and therefore aliasing from lower privileged entities
may be possible.

SIDE CHANNEL ATTACKS

MODEL: lower privileged entities cannot influence the destination of
predicted speculation.

REALITY: space matters. Prediction tables don’t contain the whole
source address and therefore aliasing from lower privileged entities
may be possible.

ATTACK: Spectre V2: speculative ROP. Indirect branches can potentially
be made to mispredict the target and jump to interesting gadgets.

SPECTRE V2

(*function_ptr)(par1, …);

Attacker trains the indirect
branch to point to some different
location.

New target contains a code sequence
similar to V1

Number of attackable places
increases significantly.
Attacker may also control
parameters.

SIDE CHANNEL ATTACKS

MODEL: speculation stops on a privilege boundary (violation).

SIDE CHANNEL ATTACKS

MODEL: speculation stops on a privilege boundary (violation).

REALITY: exceptions are deferred to instruction retirement, so
speculative paths may access data that would be otherwise not
accessible.

SIDE CHANNEL ATTACKS

MODEL: speculation stops on a privilege boundary (violation).

REALITY: exceptions are deferred to instruction retirement, so
speculative paths may access data that would be otherwise not
accessible.

ATTACK: Meltdown: attacker can construct code that would normally
trap in order to access memory beyond an exception boundary. This
allows to leak data from kernel to user space. Exfiltration is done
through similar constructs as V1.

Meltdown

value1 = *kernel_address;

value2 = userland_array[value1 * 0x40];

Access to kernel_address traps.
Stash into a speculation path or a
transaction for repeated use.

CONDITIONS FOR A SUCCESSFUL ATTACK

• Have the CPU enter a speculation path

• Have the CPU stay in the speculation path long enough

• Have the speculation path leave side effects

• Do not interfere with the side effects

• Have a way to measure the side effects

THE SINGLE BEST SLIDE I’VE EVER SEEN

Fix the
individual

bug

Prevent the
bug class

Kill the
exploitation
technique

DEFENCE

Increasing level of complexity, increasing level of effectiveness

FIXING THE INDIVIDUAL ISSUE

• A design issue, not strictly a bug
• Naturally a class, see next slide ;-)

• Affects all major CPUs
• Sharing and performance optimizations are fundamental points on the

evolution scale of CPUs

• Reinforced take-aways:
• sharing of resources should be done with side-channel attacks in mind

• likely need more barriers at privilege boundaries

PREVENTING THE CLASS
• Eradicate/Reduce the Speculation Primitive

• Do not have the CPU enter a dangerous speculation path
• Code/compiler fixing the paths
• Explicit serialization
• LFENCE, MEMBAR, etc.

• Implicit serialization
• CMOV

• Speculation safe branches
• FAR JMP, retpoline, etc.

• Manage indirect branch prediction
• IBRS, IBPB, STIBP, etc.

• Disable prediction
• HW_BTI

KILLING THE EXPLOITATION TECHNIQUE

• Make privileged data less accessible
• Similar concept to arbitrary read/write defences

• Separated kernel/page tables (KPTI/KVA Shadow/etc.)

• 1:1 physical mapping much less popular at parties

• Reduce disclosure precision
• Works when the attacker has less direct access to the hardware primitives

(e.g. browsers/Javascript)

• Reduce sharing of physical pages across guests

IS THE SKY FALLING?

• Seriously, no.
• Still a read primitive, no corruption.

• Very interesting class, expect variations and evolutions in the next
years

• Some contexts more sensitive than others
• Cloud environments vs single user machines

• Likely to shape the way we think about hardware and software
• Process already in motion on the isolation front (e.g. memory tagging)

QUESTIONS?

