
The web is broken
Let's fix it!

Roberto Clapis

Michele Spagnuolo

2019#HackInBo Bologna, Italy

We work in a focus area of the Google security team (ISE)

aimed at improving product security by targeted proactive

projects to mitigate whole classes of bugs.

Michele Spagnuolo
Senior Information Security

Engineer

Roberto Clapis
Software Engineer

(Security)

A web vulnerability that enables attackers to run malicious scripts in users'
browsers in the context of the vulnerable origin

● Server-side
○ Reflected XSS: an attacker can change parts of an HTML page displayed to the user via

sources they control, such as request parameters
○ ...

● Client-side
○ DOM-based XSS: using unsafe DOM methods in JS when handling untrusted data
○ ...

What is Cross-site scripting (XSS)?

● Not secure-by-default

● Hard and error-prone
○ Different rules for different contexts

■ HTML
■ CSS
■ JS
■ XML-like (SVG, ...)

● Unsafe DOM APIs are out there to be (ab)used
○ Not just innerHTML!

Manual escaping is not a solution

● Templating systems with strict contextual escaping

○ Java: Google Closure Template/Soy
○ Python: Google Closure Template/Soy, recent Django (avoid |safe)
○ Golang: safehtml/template, html/template
○ Angular (Angular2+): TypeScript with ahead of time compilation (AoT)
○ React: very difficult (but not impossible) to introduce XSS

● Safe-by-default APIs

○ Use wrapping "safe types"
■ JS Trusted Types coming in Chromium

A better solution: templating systems + safe APIs

https://github.com/golang/go/issues/27926

The idea behind Trusted Types

→Source ... Policy Trusted Type→ → → ... DOM sink→

When Trusted Types are enforced:

DOM sinks reject strings:

DOM sinks accept only typed objects:

Content-Security-Policy: trusted-types myPolicy

element.innerHTML = location.hash.slice(1); // a string

element.innerHTML = aTrustedHTML; // created via a TrustedTypes policy

https://github.com/w3c/webappsec-trusted-types/
https://github.com/w3c/webappsec-trusted-types/wiki/Integrations

https://github.com/w3c/webappsec-trusted-types/
https://github.com/w3c/webappsec-trusted-types/wiki/Integrations

● XSS in its various forms is still a big issue

● The web platform is not secure-by-default

● Some XSS (especially DOM-based) are very hard to prevent

● Defense-in-depth is very important in case primary security mechanisms
fail

The need for Defense-in-Depth

"raising the bar"

● Increase the "cost" of an attack
● Slow down the attacker

Example:

● whitelist-based CSP
→ sink isn't closed, attacker needs more time to
find a whitelist bypass
→ often there is no control over content hosted
on whitelisted domains (e.g. CDNs)

Mitigation ≠ Mitigation
vsReducing the attack surface

● Measurable security improvement
● Disable unsafe APIs
● Remove attack vectors
● Target classes of bugs
● Defense-in-depth (Don't forget to fix bugs!)

Example:

● block eval() or javascript: URI
→ all XSS vulnerabilities using that sink
will stop working

● nonce-based CSP

CSP is also hardening!
● Refactor inline event handlers
● Refactor uses of eval()
● Incentive to use contextual templating

system for auto-noncing

● >95% of the Web's whitelist-based CSP are bypassable automatically
○ Research Paper: https://ai.google/research/pubs/pub45542
○ Check yourself: http://csp-evaluator.withgoogle.com
○ The remaining 5% might be bypassable after manual review

● Example: JSONP, AngularJS, ... hosted on whitelisted domain (esp. CDNs)

● Whitelists are hard to create and maintain → breakages

Why NOT a whitelist-based CSP?

TL;DR Don't use them! They're almost always trivially bypassable.

 script-src 'self' https://www.google.com;

More about CSP whitelists:
ACM CCS '16, IEEE SecDev '16, AppSec EU '17, Hack in the Box '18,

https://ai.google/research/pubs/pub45542
http://csp-evaluator.withgoogle.com
https://ai.google/research/pubs/pub45542
https://ieeexplore.ieee.org/document/7839808/
https://2017.appsec.eu/presos/Developer/So%20we%20broke%20all%20CSPs...%20You%20won't%20guess%20what%20happened%20next!%20-%20Michele%20Spagnuolo%20and%20Lukas%20Weichselbaum%20-%20OWASP_AppSec-Eu_2017.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D2T2%20-%20Michele%20Spagnuolo%20&%20Lukas%20Weichselbaum%20-%20Defense-in-Depth%20Techniques%20for%20Modern%20Web%20Applications%20and%20Google%E2%80%99s%20Journey%20with%20CSP.pdf

nonce-based + strict-dynamic

nonce-only

nonce-based + strict-dynamic + unsafe-eval + hashed attributes

nonce-based + strict-dynamic + unsafe-eval

remaining XSS attack surface

ad
op

tio
n

eff
ort

fewer sinks coveredmore sinks covered

ea
sy

ha
rd

L1

L2

L3

L4

=

v75

Incremental CSP Adoption

start

finish

Reducing the attack surface with CSP
In-depth talk:

Content Security Policy - A successful mess

between hardening and mitigation

https://speakerdeck.com/mikispag/content-security-policy-a-successful-mess-between-hardening-and-mitigation
https://speakerdeck.com/mikispag/content-security-policy-a-successful-mess-between-hardening-and-mitigation
https://speakerdeck.com/mikispag/content-security-policy-a-successful-mess-between-hardening-and-mitigation

 script-src 'nonce-r4nd0m' 'strict-dynamic';
 object-src 'none'; base-uri 'none';

What is a CSP nonce?

Content-Security-Policy:

✔ <script nonce="r4nd0m">kittens()</script>
✘ <script nonce="other-value">evil()</script>

Trust scripts added by already trusted codeExecute only scripts with the correct nonce attribute

✔<script nonce="r4nd0m">
 var s = document.createElement('script')
 s.src = "/path/to/script.js";
✔ document.head.appendChild(s);
 </script>

The Easy Way: nonce-based + strict-dynamic
 script-src 'nonce-r4nd0m' 'strict-dynamic';
 object-src 'none'; base-uri 'none';

Refactoring steps:
<html>
 a
 b
 <script src="stuff.js"/>
 <script>
 var s =
 document.createElement('script');
 s.src = 'dynamicallyLoadedStuff.js';
 document.body.appendChild(s);
 var j = eval('(' + json + ')');
 </script>
</html>

<html>
 a
 b
 <script nonce="r4nd0m" src="stuff.js"/>
 <script nonce="r4nd0m">
 var s = document.createElement('script');
 s.src = 'dynamicallyLoadedStuff.js'
 document.body.appendChild(s);
 document.getElementById('link')
 .addEventListener('click', alert('clicked'));
 var j = JSON.parse(json);
 </script>
</html>

soon

The Easy Way: nonce-based + strict-dynamic
 script-src 'nonce-r4nd0m' 'strict-dynamic';
 object-src 'none'; base-uri 'none';

PROs:

+ Reflected/stored XSS mitigated
+ Little refactoring required

● <script> tags in initial response
must have a valid nonce attribute

● inline event handlers and javascript:
URIs must be refactored

+ Works if you don't control all JS
+ Good browser support

CONs:

- DOM XSS partially covered
- e.g. injection in dynamic script creation possible

TL;DR Good trade off between refactoring and covered sinks.

soon

The Better Way: nonce-only
 script-src 'nonce-r4nd0m';
 object-src 'none'; base-uri 'none';

Refactoring steps:
<html>
 a
 b
 <script src="stuff.js"/>
 <script>
 var s =
 document.createElement('script');
 s.src = 'dynamicallyLoadedStuff.js';
 document.body.appendChild(s);
 </script>
</html>

<html>
 a
 b
 <script nonce="r4nd0m" src="stuff.js"/>
 <script nonce="r4nd0m">
 var s = document.createElement('script');
 s.src = 'dynamicallyLoadedStuff.js'
 s.setAttribute('nonce', 'r4nd0m');
 document.body.appendChild(s);
 document.getElementById('link')
 .addEventListener('click', alert('clicked'));
 </script>
</html>

soon

The Better Way: nonce-only
 script-src 'nonce-r4nd0m';
 object-src 'none'; base-uri 'none';

PROs:

+ Best coverage of XSS sinks
possible in the web platform

+ Supported by all major browsers
+ Every running script was explicitly

marked as trusted

CONs:

- Large refactoring required
- ALL <script> tags must have a valid

nonce attribute
- inline event-handlers and javascript:

URIs must be refactored

- You need be in control of all JS
- all JS libs/widgets must pass nonces to child

scripts

TL;DR Holy grail! All traditional XSS sinks covered, but sometimes hard to deploy.

soon

Nonce-only is great!
 script-src 'nonce-r4nd0m';
 object-src 'none'; base-uri 'none';

javascript: URI ✓

data: URI ✓

(inner)HTML context ✓

inline event handler ✓

eval ✓

script#text ✓ (✘ if untrusted script explicitly marked as trusted)

script#src ✓ (✘ if untrusted URL explicitly marked as trusted)

XSS Sinks Covered:

soon

Use a nonce-based CSP with strict-dynamic:

If possible, upgrade to a nonce-only CSP:

CSP in brief

 script-src 'nonce-r4nd0m' 'strict-dynamic';
 object-src 'none'; base-uri 'none';

 script-src 'nonce-r4nd0m';
 object-src 'none'; base-uri 'none';

● How to adopt an effective CSP in
your web app: csp.withgoogle.com

● Always double check your CSP with
the CSP Evaluator:
csp-evaluator.withgoogle.com

CSP tools & resources

https://csp.withgoogle.com
https://csp-evaluator.withgoogle.com
https://csp-evaluator.withgoogle.com/

XSS done, everything
else to go...

Cross site request forgery (CSRF/XSRF)

● Client-side example form:

● What the server sees when user submits:
● cookies
● action=buy_product
● quantity=1000

● There is no secure notion of web origin

Cross site request forgery (CSRF/XSRF)

● It’s been there since the beginning
● It’s clumsy to address
● Requires developers to add custom protections on top of the platform
● Normally addressed by adding tokens in hidden forms parameters
● It is not clear what to protect, so even using frameworks might lead to issues

Example: GET requests are usually not protected by frameworks but developers
might decide to have state-changing APIs that use GET parameters, or some
libraries might automatically parse GET forms and treat them as POST. If this
happens after the CSRF middleware runs the vulnerability is still there.

Same Site Cookies

● Simple server-side CSRF mitigation mechanism

Set-Cookie: <name>=<value>; SameSite=(Lax|Strict);

● Lax allows cross-site navigation
(default since Chromium 80)

● Strict prevents cookies from
being sent in any cross-site action

Cross site leaks (XS-Leaks)

● Extract bits of information via side channels
● The attacking page doesn’t need to see the cross-origin content, just the

time it took to load, or the error that happened while trying to load
● Same-origin policy does not protect against this kind of attacks

For example, login detection: loading a frame errors if user is not logged in.

Spectre

● Extract bits of information via hardware
issues

● Get around Same-Origin policy because
the memory is in the same process, and it
can be accessed via side-channels

● Requires precise timers, but they can be
crafted

Spectre

No %
data

No %
data

if

First execution

Spectre

No
data

No
data

if

Often Rarely

if

First execution Many executions

Time

Spectre

Many executions

● After many executions the
CPU will start speculating
which branch should be
taken, and will execute it
before the if conditions
computed

● Some side effects of this
can be inspected

Often Rarely

if

Spectre, an example

Run many times with small indexes, then with controlled_index > max_index

if (controlled_index < max_index) {

secret_value = index_array[controlled_index];

_ = data_array[secret_value*cache_block_size];

}

Measure access time to different blocks of data_array

The one in secret_value position will be faster to access

How do you get stuff
in memory?

The legacy of Same Origin Policy

<script
 src=https://vulnerable.com/interesting_data>
</script>

COR{B,P}

Cross Origin Read Blocking
On by default, but it is a heuristic

Cross-Origin-Resource-Policy
Enforces CORB and provides more
protection

How do you NOT get
stuff in memory?

Fetch Metadata

● Three Sec-Fetch-* request headers
○ -Mode (cors, navigate, no-cors, same-origin,

websocket...)
○ -Site (cross-site, same-origin, same-site, none)
○ -User (boolean)

● Servers can now make informed decisions
whether to provide the requested resource

Sample HTTP request headers

GET /?do=action HTTP/1.1

Sec-Fetch-Mode: no-cors

Sec-Fetch-Site: cross-site

The code

func Allowed(r *http.Request) bool {
site := r.Header.Get("sec-fetch-site")
mode := r.Header.Get("sec-fetch-mode")
if site != "cross-site" {

return true
}
if mode == "navigate" && req.Method == "GET" {

return true
}
return false

}
Find a reference module here:

github.com/empijei/go-sec-fetch

https://github.com/empijei/go-sec-fetch

Once we block
resources...

 XS-Leaks: Cross site search (XSSearch)

● A notable example of cross-site leaks
● Extract bits of information from the

time it takes to load search results
● In 2016 this affected GMail and Bing to

a point where credit cards could be
stolen in less than 45s and the full
search history in less than 90s

Cross-site search

● Open a window to
victim.com/?q=search_term

● Navigate it many times with
different search terms and
measure timing, or count frames,
or read history length...

● Leak data

evil.com

victim.com

We could you CSRF tokens but...

Very complicated to add to GETs

Would break some functionalities

Bookmarks would stop working

Lowers caches efficacy

Even if we did...

Tabnabbing

● Phishing attack that relies on navigations that the user does not expect
● Example:

○ User clicks on a link on GMail
○ The link opens a new tab
○ The originating page (gmail.com) gets redirected to a phishing clone (gmai1.com) asking

for credentials
○ When the user closes the new tab, they will go back to the previous context and expect it to

still be GMail
○ User inputs credentials in gmai1.com

How do we fix it?

Cross Origin Opener Policy

● Dictates top-level navigation cross-origin behavior
● Addresses attacks that rely on cross-window actions
● Severs the connection between windows during navigation

Cross-Origin-Opener-Policy: "same-origin"

evil.example victim.example

Open new window

What about the first
navigation?

Double-Keyed Caches

Navigations can still leak bits of information, even with

 Vary: Sec-Fetch-Site

If a resource is loaded by a page (e.g. profile picture) it is
brought in cache, and it is thus measurably faster to load

This could identify Twitter users by using a
divide-and-conquer approach (silhouette attack)

Double-Keyed-Caches use the origin that requested the
data as secondary key.

https://technical.nttsecurity.com/post/102f0uh/your-silhouette-tells-who-you-really-are

Recap

Content-Security-Policy:
 script-src 'nonce-r4nd0m' 'strict-dynamic'; object-src
'none'; base-uri 'none';

Cross-Origin-Opener-Policy: same-origin

Cross-Origin-Resource-Policy: same-origin

+

a Fetch Metadata policy

Mahalo!
Questions?

You can find us at:
 {clap,mikispag}@google.com
 @empijei, @mikispag

Slides:
clap.page.link/fixtheweb

2019#HackInBo Bologna, Italy

https://twitter.com/we1x
https://twitter.com/mikispag
https://clap.page.link/fixtheweb
https://clap.page.link/fixtheweb

